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Abstract. We demonstrate how WO tilings with face-centred icosahedral symmetry can be 
derived from one another by using only local information. The tilings under consideration 
are the zonohedral tiling proposed by Socolar and Steinhardt, which is closely relaled to 
the original three-dimensional rhombohedral tiling, and the tetrahedral tiling of Danzer. 
Both tilings have matching rules, and our proof is based on this properly. 

1. Introduction 

Since Penrose described an aperiodic pattern with fivefold symmetry in 1974, a 
large number of tilings has been discovered and various generation methods for 
different non-crystallographic symmetries have been described. Some patterns look 
very different but contain the same information. Penrose’s original dart and kite 
tiling, for example, is fully equivalent to rhombus tiling as welt as to pentagon tiling: 
each one can be derived from the other. 

In this paper we do not want to add a further tiling to the zoo of patterns, but 
demonstrate the equivalence of two quite different tilings, the zonohedral tiling of 
Socolar and Steinhardt [l] and the tetrahedral tiling of Danzer [2,3] using the concept 
of mutual local derivability formulated by Baake ef a1 [4]. Both tilings are examples 
not of the usual simple icosahedral quasilattices but of face-centred icosahedral (FCI) 
ones:. Interest in FCI quasicrystals has increased because of the discoveiy of stable 
AlFeCu FCI quasiclystals. Recently the structure of these quasicrystals has been 
investigated with neutron diffraction by Cornier-Quiquandon et a1 [5]. They showed 
that the atomic arrangement may be described by a tiling model. 

Kramer ef a1 [6,7] systematically derived new tilings for icosahedral quasicrystals 
from the face-centred hypercubic lattice, often called D, in mot lattice terminology. 
They projected either the three-dimensional boundaries of the Delauney cells or of 
the Voronoi cells of this lattice to get the tilings. They proved that it is possible to 
derive locally Danzer’s tetrahedral tiling from the Voronoi cell projection of the D, 
tiling [9]. Here, on the other hand, we demonstrate the equivalence of Danzer’s tiling 
and the tiling of Socolar and Steinhardt. 

t Present address: LASSP, Clark Hall, Cornell Universily, Ithaca, NY 14853, USA. 
$ The simple and FCI quasiclystals have different inflatioiddeflation properties. The fanor for the first 
one is 7’ whereas it is T for the second. r is the golden number (fi+ 1)/2, 
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The paper is organized as follows. After a short description of the properties 
of both tilings relevant for the present discussion we describe how to obtain the 
tetrahedral tiling, starting from the zonohedra, and then we discuss the opposite case. 
Finally we mention some applications of the results. 

Before starting we shall mention briefly what mutual local derivability means: 
given two quasiperiodic tilings it is possible to derive one from the other by only 
considering finite parts of the first tiling and describing rules to generate the second 
one from the first. The same must be true if one starts from the second tiling and 
derives the first. For a precise definition of mutual local derivability and its relation 
to the local isomorphism the reader is advised to consult 141. 

2. Zonohedral tiling 

A zonohedron as defined by Coxeter [SI is the convex hull of the sum of all vectors 
of a vector star. Its faces are built up by 2m-gons, if the vector star contains groups 
of m coplanar vectors. In our case m = 2 and therefore all faces are rhombi. 
The zonohedral tiling of Socolar and Steinhardt [l] was derived in a paper about 
the generalized dual method (GDM) as the Penrose local isomorphism (PLI) class of 
icosahedral quasicrystals. The GDM is very similar to the original grid method but 
it uses planes with two spacings, r and 1, and the sequence is generated by the 
Fibonacci series. The PLI class is defined by the existence of simple local matching 
rules, simple inflation and deflation rules, and by a simple decoration of the tiles 
which forms a linear quasiperiodic grid called the Ammann quasilattice. The Ammann 
quasilattice for the PLI class is extremely singular, which means that more than three 
grid planes meet in a single intersection point. Contrary to the two-dimensional 
case the singularities cannot be eliminated, they can almost be shifted. The duals of 
non-singular intersection points are the well known Ammann rhombohedra, but only 
the prolate rhombohedra (PR) occur in the PLI class. Normally, the singularities are 
resolved by arbitrary infinitesimal shifts of the grid planes and then the grid is dualized 
to generate the ordinary rhombohedra. Socolar and Steinhardt decided, however, not 
to eliminate the singularities, which would have destroyed the PLI properties, but to 
dualize the singular intersection points by zonohedra which are the hull of all possible 
resolutions of the singular points. For fourfold, fivefold, and sixfold degeneracy they 
obtained the rhombic dodecahedron (RD), the rhombic icosahedron (RI) and the 
rhombic triacontahedron (RT). Three-dimensional pictures of the polyhedra may be 
found in Socolar and Steinhardt [l]. 

The rhombic dodecahedron has the same volume as two PR and two oblate 
rhombohedra (OR) and D,, symmetry. The RI can be divided into five PR and five 
OR and has D,, symmetly, and the RTC may be filled with ten PR and ten OR and 
displays the full icosahedral Y, symmeay. 

It is possible to construct local clusters of zonohedra that have complete 
icosahedral symmetry. The first cluster is the RT itself, the second a star of twenty PR. 
The three complete packings with a (single) centre of icosahedral point symmetry are 
generated by inflation of the clusters. One of the packings has an RT at its centre, the 
next shell being composed of thirty RD. The other two have a star of PR rhombohedra 
at their centres, one having twelve RI as the next shell, the other having twelve RT. 

The matching rules can be obtained by decorating the tiling with Ammann planes, 
which are generated by inflation and rescaling of the quasiperiodic gridplanes. There 
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are three different possible intersections of the Ammann planes with the rhombic 
faces of the zonohedra: the cuts form an arrow (figure l(a)), a triangle (figure, 
1@)) or the planes hersect in a single line (figure I(c)). Socolar's and Steinhardt's 
symbols are smaller versions of the cutting figure. 'Ib build up the tiling, equivalent 
symbols must match. The matching rules applied to the zonohedra partially break 
the symmetry: the RD has only qh symmetly and the RI has C,, symmetry (see also 
seaion 4). 

Figure 1. The three different rhombic faces: the picture 
at the left-hand side of each pan (a)-(c) displays Lhe 
intenection of the faca with the Ammann planes (thin 
lines) and lhe symbol used by Socolar and Steinhardt 
(thick lines). The broken lines denote the subdivision 

(c) 2 0 . . . K1 . - i / K 1  . -. . . into pieces. The picture at the righl-hand side show the 
corresponding tetrahedra faces of Danzer's tiling. Broken 
lies are the edges 01 the tetrahedra. The numben and 
letlen are taken from [2,3]. The letters give the type of 
telrahedra and the number behind the letter the vertex 
class of the fourth comer of the tetrahedron which does 
not lie in the plane. 

2 

K q  K1 

3 

Socolar and Steinhardt also describe the deflation of the zonohedlal tiling. The 
deflation takes place in two steps: the original tiles are at first divided intopieces, then 
the pieces are rejoined to form again zonohedra scaled down by a factor of l / ~ .  The 
general procedure is quite complicated because the same pieces may serve different 
roles in the new zonohedra. The deflation procedure is nevertheless deterministic, 
the local deflation being determined by the Ammann planes and the adjoining cells. 

Socolar and Steinhardt did not realize that their tiling is no! a simple icosahedral 
tiling but a face-centred one. This may easily be proven either by the fact that the 
inflation-dehtion ratio is 7 (compared with 13 in the simple icosahedral case) or 
by splitting the vertices into even and odd ones with respect to the sum of their 
six-dimensional coordinates and calculating their relative occurrence. 

3. Tetrahedral tiling 

The tetrahedral tiling of Danzer [2,3] consists of four tetrahedra called A, B, C and 
K, out of the set of all tetrahedra that can be constructed by cuts of the mirror planes 
of the full icosahedral point symmetry group. The tiling has the following properties. 

(i) The edges of the tiles are coloured red, green or white, if their dihedral angles 
are 90°, 60° or 120°, or multiples of 36". 
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(U) The vertices fall into four classes indicated by numbers. The class number 4 
only occurs at the corners of the K-tiles where three red edges meet. There is only 
one possible arrangement of tiles in class 4. 

(iii) If the red-coloured edges are removed from the tiling, four tetrahedra of type 
A, B and C and eight tetrahedra of type K are combined to form octahedra of type 
A, B, C and K, respectively. 

The matching rules for the faces of the tiling are purely geomeiric, if none of the 
edges of a face is red. But if there is a red edge, then the tiles on both sides of the 
face must be mirror images. This allows the tiling to be described by octahedra. 

There are exactly three tilings which are globally symmetric with respect to the 
full icosahedral group. By inflation and subsequent expansion they are permuted 
cyclically. 

Figures of all the faces of the tetrahedra may be found in Danzer’s [3] paper 
together with a description of the construction of the whole tetrahedra. 

4. From zonohedra to tetrahedra 

In this section we shall describe how the zonohedra must be subdividcd to yield the 
tetrahedra and how the matching rules are translated from the zonohedral tiling to 
the tetrahedral tiling. 

We first consider the decoration of the zonohedral faces and how they must be 
decorated by tetrahedra (figure 1) to obey Danzer’s matching rules. The rhombi 
with the arrow and the triangle seem to have a symmetry lower than the A and C 
tetrahedra decorating them, but taking into account the deflation rules for the A1 
and C1 faces given by Danzer, the higher symmey of the tetrahedron decoration 
is broken, and the uniquenes is restored. Symmetry breaking may be indicated by 
assigning letters a and b to the corners of the tetrahedra with the same number. 
The rhombus with the line (line rhombus) is decorated by four K-tetrahedra. The 
vertices of the rhombi all belong to classes 2 and 3 and the centre of a line rhombus 
is a vertex of class 4. The decoration of the faces with tetrahedra obeys Danzer’s 
matching rules in the following way: the tiles on both sides of a rhombus are mirror 
images, since each rhombus contains at least one red coloured tetrahedron edge and 
the tetrahedra adjoined to a rhombus form an octahedron. We therefore have a 
one-to-one correspondence of the arrow, triangle and line symbol to the A, C and 
K octahedra or tetrahedra, which is indeed a translation of Socolar and Steinhardt’s 
into Danzer’s matching rules. 

We next consider the subdivision of the zonohedra. The decoration of the line 
rhombi with K-tetrahedra lixes all vertices in the interior of the PR and RD. The Kr 
has an additional vertex at its centre, and the RI a vertex lying at the Centre of the 
semi-spherical cap built up by line rhombi. No other vertices occur. AI1 the vertices 
in the interior of the zonohedra are of type 1. If all the vertices of the tetrahedra and 
the decoration of the faces of the zonohedra are known, the edges of the tetrahedra 
can be drawn immediately and the derivation is complete. The subdivision of the 
zonohedra into tetrahedra is shown in figures 2(a)-(d), where most of the tetrahedra 
can be seen directly. The RD is the only zonohedron which has additional A- and 
C-tetrahedra not shown in the cuts, but these tetrahedra can be deduced from the 
faces. The subdivkion of the zonohedra into tetrahedra is also summarized in table 
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(b) 
2 4  2 

/B2 83 83 

1 K3 K3 
3 

3 4 3 2 4  2 

(d) 
( C )  3 4 3 

2a 

3 4 3 

Figure 2. The zonohedra and their dmmposilion into letrahedra: (a) prolate 
rhombohedron, (b) rhombic dodecahedron, (c) rhombic icosahedron, (d) rhombic 
triacontahedron. The pictures display two-dimensional representative cuts along mirror 
planes of the three-dimensional polyhedra. In the case of the dodecahedmn we give 
two perpendicular cub containing the vertical 4-1-1-4 axes. The planes through the 
polyhedra show all the tetrahedra of a certain zonohedmn except for lhe dodecahedron. 
The uniqueness of the subdivision may be checked by considering the cu1 planes in 
connection with the decoration of the faces given in figure 1. The marking for the faces 
is Ihe same as in figure 1, the lower case letters dislinguish the vertices if a tetrahedron 
has two comen of the same type. 

Table 1. The subdivision of Socolar’s and Steinhardt’s zonohedra (ssz) into Danzer’s 
tetrahedra (m). The indices are the number of tetrahedra in an asymmetric part of the 
zonohedmn. 

D T \ S S Z  PR RLI RL tyT 

A 0 82 lo1 0 

C 61 123 lo1 0 
B 0 41 404 1201 

K 129 8r 404 lZ0i 

1, where the number of tetrahedra in the complete zonohedron and in an asymmetric 
unit are given. 

We have demonstrated how the zonohedral tiling can be subdivided into Danzer‘s 
tetrahedra. The matching rules for the teaahedra inside the zonohedra are fulfilled by 
the rules for subdivision and the matching rules on the surface have been translated 
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into rules for a unique decoration of the rhombic faces of the zonohedra with 
tetrahedra which obey the matching rules for the tetrahedral tiling. Therefore any 
of Socolar’s and Steinhardt’s zonohedral tiling can be transformed into a tetrahedral 
tiling. 

5. From tetrahedra to zonohedra 

Now we shall describe the derivation of the zonohedral tiling from a tetrahedral tiling. 
The tetrahedral tiling should be a global tiling as defined by Danzer [3], which means 
that it is a covering of the space without overlap. 

The first step of our derivation is to change the tetrahedral tiling into an octahedra 
tiling by removing the red coloured edges, which is always possible as proved by 
Danzer [2,3]. The vertices of class 4 are eliminated in this way. Danzer also showed 
that the tiling consisting of A, B, C and K tiles can be transformed into a A, C, K 
and TK tiling, where TK is the union of a B and a K tile. In this way the vertices of 
class l b  of the B-octahedra are eliminated (see figure 2). NI the remaining vertices 
of class 1 will now be called class l a  verticcs. Each octahedron of type A, C, K 
and rK has at least two mirror planes, and one of these planes contains the vertices 
numbers 2 and 3. An inspection of the octahedra shows that the vertices are the 
corners of rhombi of a unique size. Thus we have found the faces of the zonohedra. 
The vertices of class 1 lie symmetrically above and below the mirror plane spanned 
by the class 2 and 3 vertices. 

If we now take an arbitraly l a  vertex, we find that it is connected only to class 
2 and 3 vertices, since each vertex of an octahedron is linked only with vertices of 
another class. The rhombi spanned by the class 2 and 3 vertices must generate a 
closed polyhedral shell since the octahedra are packed face-to-face. 

The last step would be to show that the cells are indeed zonohedra, but this can 
be checked by inspection of the possible environments of class l a  vertices. There are 
exactly four different environments which correspond exactly to the four zonohedra. 
A calculation of the frequencies of the l a  environments and the zonohedra shows 
that the numbers for both tilings coincide. 

The zonohedral tiling is nothing else but a Voronoi decomposition of the 
quasilattice of class l a  vertices of Danzer’s tiling, since the class 2 and 3 vertices lie 
in mirror planes between l a  vertices. This fact shows that the derivation is definitely 
local. 

We have described how the tetrahedral tiling must be modified to a octahedral 
tiling which can immediately be transformed into a zonohedral tiling. 

6. Discussion and conclusions 

We have demonstrated the equivalence of two FCI tilings with respect to mutual local 
derivability: any tiling of Socolar and Steinhardt‘s zonohedra obeying their matching 
rules can be transformed into Danzer’s tetrahedral tiling obeying his matching rules 
and vice versa. 

The equivalence of quasiperiodic patterns is often very useful for the construction 
of a tiling. If one is interested for example in the frequencies of certain patterns or 
in vertex configurations it is sometimes helpful to know an equivalent pattern (with 
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a different construction rule) and to do the calculations there. The derivation of 
the vertex configurations and tile frequencies for example is very complicated in the 
zonohedral tiling but easily obtained in the tetrahedral tiling. Therefore it seems 
to be a necessary task to classify the known quasicrystalline patterns with respect to 
mutual local derivability, as stated by Baake et al [4]; the result will be the essential 
quasiclystalline tiling patterns and a classification of the large ‘zoo’ of tilings. 
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